DLMS KNX-Interface einbinden

Anleitung zur Einbindung des DLMS KNX-Interfaces in ein KNX-System und Bildung des Füllpegelsignals.

Voraussetzungen

Anschluss des KNX-Interfaces an

- DLMS Wandgerät PROFI mit Digitalschnittstelle
- DLMS Hutschienengerät PROFI mit Digitalschnittstelle
- DLMS Wandgerät kompakt mit Digitalschnittstelle

Konfiguration des DLMS

- DLMS Wand- und Hutschienengerät PROFI:
 - BCD-Digitalausgang auf "nicht invertiert" stellen
 - PullUp Jumper gesteckt lassen
- DLMS Wandgerät kompakt:
 - BCD-Digitalausgang auf "invertiert" stellen
 - PullUp Jumper entfernen
 - Schwarzes Kabel des KNX-Interfaces nicht anschließen (isolieren)

Darstellungsmöglichkeiten

- "Pegelstand" zur Anzeige des Füllstands im Behälter von 0%-100% in 10%-Schritten
- Signalisierung der Betriebszustände "Fehler", "kein Pegel", "Überlauf" und "Aus"

tne-systeme UG (haftungsbeschränkt) Wehrleshalde 38 73434 Aalen Germany	tne
Tel: +49 (0) 7361-9806027 mail: <u>info@tne-systeme.de</u>	technology novelties engineering
www.zisternensteuerung.de	

Alle Markenzeichen sind Eigentum der betreffenden Hersteller.

KNX-Interface in KNX-System einbinden

1.	1. KNX-Interface anmelden:								
	=> Programmbibliothek des KNX-Interfaces in ETS importieren:								
	Das KNX-Interface ist hardwareseitig zur Verwendung mit dem DLMS								
	angepasst. Die Software ist nicht modifiziert, es kann die originale								
	Programmbibliothek des Herstellers ABB, Typ US/U4.2 genutzt werden.								
2.	2. Parameter des KNX-Interfaces in ETS konfigurieren								
	=> BeiAllgemein" sind in der Regel keine Anpassungen erforderlich								
_				Suche					
ŕG	Serät: 1.1.206 US/U4.2 Universal-Schnit	tstelle,4fach,UP							
	Allgemein Kanal A	Sendeverzögerung [2255s]	2						
	Kanal B Kanal C	nach Busspannungswiederkehr	< HINWEIS						
	Kanal D	Initialisierungszeit (2s) enthalten							
		Anzahl Telegramme begrenzen	nein 🔹						
		Obiekt "Telear. Ventilspüluna" versenden	nein 🔹						
		Dieser Parameter ist bei Steuerung	< HINWEIS						
		eines Elektronischen Relais relevant							
-		1							
K	Kommunikationsobjekte / Parameter	/ Inbetriebnahme /	1	1					

KNX-Interface in KNX-System einbinden

- **3.** Parameter des KNX-Interfaces in ETS konfigurieren
 - => Die Kanäle A bis D sind anzupassen:
 - Funktion jedes Kanals zu "Schaltsensor" wählen
 - zyklisches Senden bei Bedarf einschalten (lila Rahmen)
 - weitere Einstellungen siehe unten übernehmen

Allgemein	Euristian das Kanals	Schaltzensor					
Kanal A	Funktion des Kanais	Schaltsensor					
Kanal B	Unterscheidung zwischen kurzer und	nein					
Kanal C	langer Betätigung						
Kanal D	Zyklisches Senden des Objekts "Schalten"	immer					
	Reaktion bei Schließen des Kontakts (steigende Flanke)	EIN					
	Reaktion bei Öffnen des Kontakts (fallende Flanke)	AUS 1min					
	Telegramm wird wiederholt alle ("Sendezykluszeit"): Basis						
	Faktor [1255]	10					
	Objektwert senden nach Busspannungswiederkehr	ja					
	Entprellzeit / Mindestbetätigungsdauer	50ms Entprellzeit					
- ·	1 1 001						
Programmieri	ing durchführen						
=> Applikationsprogramm programmieren							

Pegelsignal bilden allgemein

Das DLMS stellt den Pegelstand und Störungsmeldungen in Form von 4 Digitalausgängen als 4 Bit-codiertes BCD-Signal dar. Die Digitalausgänge A bis D geben dabei jeweils ein Bit aus. D ist das höchstwertige Bit (2^3 =8), A das niederwertigste Bit (2^0 =1).

Ausgabe	BCD normal				BCD invertiert				
	Funktion 1 & 3				Funktion 2 & 4				
	D	С	В	Α	D	С	В	Α	
	2 ³	2^{2}	2^{1}	2^{0}	2 ³	2^{2}	2 ¹	2^{0}	
Pegel 0	0	0	0	0	1	1	1	1	
Pegel 1	0	0	0	1	1	1	1	0	
Pegel 2	0	0	1	0	1	1	0	1	
Pegel 3	0	0	1	1	1	1	0	0	
Pegel 4	0	1	0	0	1	0	1	1	
Pegel 5	0	1	0	1	1	0	1	0	
Pegel 6	0	1	1	0	1	0	0	1	
Pegel 7	0	1	1	1	1	0	0	0	
Pegel 8	1	0	0	0	0	1	1	1	
Pegel 9	1	0	0	1	0	1	1	0	
Pegel 10	1	0	1	0	0	1	0	1	
Pegel 11= Ü	1	0	1	1	0	1	0	0	
nicht genutzt	1	1	0	0	0	0	1	1	
kein Pegel	1	1	0	1	0	0	1	0	
Error	 1	1	1	0	0	0	0	1	
Gerät aus	 1	1	1	1	1	1	1	1	

Ausgabetabelle

Beispiele:

- Bitmuster der Ausgänge DCBA 0110 = "6" entspricht dem Pegelstand "60%"
- Bitmuster der Ausgänge DCBA 1110 entspricht "Error"

Der Pegelstand und die Störungsmeldungen können mit einem Bit-zu-Byte-Wandler in einer Visualisierungs- oder Steuerungssoftware gebildet und weiterverarbeitet werden. Die Umwandlung ist auch mit einem Logikmodul (z.B. ABB LM/S1.1) möglich. Abhängig vom verwendeten System kann der gemessene Pegel an Tablets, Smartphones oder Einbaudisplays angezeigt oder für weitere Steuer- und Regelaufgaben weiterverwendet werden.

Pegelsignal bilden allgemein

Nutzung eines Bit-zu-Byte Wandlers

 Das Pegelsignal liegt nach dem Bit-zu-Byte-Wandler in der dezimalen Form 0-10 vor, was 0-100% Füllpegel entspricht. Um den Pegel in der Form 0-100% anzuzeigen ist nach dem Bit/Byte-Wandler ein Multiplikationsbaustein mit dem Faktor 10 eingefügt.

Muliplikation und Summenbildung

 Berechnung des Pegels aus der Multiplikation der Einzelbits mit ihren dezimalen Werten und anschließende Summation. Um den Pegel in der Form 0-100% anzuzeigen ist ein Multiplikationsbaustein mit dem Faktor 10 eingefügt. (Pegelstand=(8xD+4xC+2xB+1xA) x10).

Pegelsignal bilden (Beispiele)

GIRA

- Nutzung eines Bit/Byte Wandlers:

Das Pegelsignal liegt nach dem Bit-zu-Byte-Wandler in der dezimalen Form 0-10 vor, was 0-100% Füllpegel entspricht. Soll der Pegel in der Form 0-100% angezeigt werden so ist nach dem Bit/Byte-Wandler ein Multiplikationsbaustein mit dem Faktor 10 einzufügen (orangener Pfeil)

XHOME

 Berechnung des Pegels aus der Multiplikation der Einzelbits mit Ihrem dezimalen Wert und anschließende Summation und Multiplikation mit dem Faktor 10. Hier realisiert mit logischen Bausteinen. (Pegelstand=(8xD+4xC+2xB+1xA) x10)

